

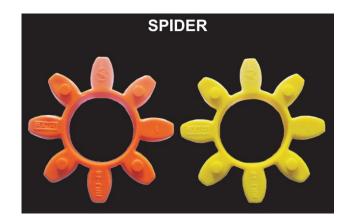
- Allover machining Inherently balanced
- No Lubrication, Maintenance free Long life
- Compact design, High power to weight ratio
- Fail safe Will perform even if spider fails
- Vibrations Damping, torsionally flexible
- Axial plug-in, easy to assemble

RRJ Coupling Output Output

HUB TYPE II HUB TYPE III HUB TYPE III HUB TYPE III K1 K2 L1 L1 L1

TECHNICAL DATA

RRJ - ALUMINIMUM (AL)*


		kW @ 1	100 rpm	Torque Nm	Max.		Bore	-ØD						DIME	NSIONS	(mm)					# A:	ssembly			
Coupling Size	Coupling Type	Red	Yellow	Red	Speed RPM	РВ	Min.	Max.	ØA	ØB1	ØB2	øс	DBSE min,	F	L1	L2	G	TL	K1	K2	Weight (Kg.)	M.I. (Kg.m²)			
19	I	0.18	0.1	18	14000		6	19	41	32	-	18	16	12	25		_	66	20	_	0.11	2.3 X 10 ⁻⁵			
19	II	0.18	0.1	18	14000		19	24	1	-	41	10	16	12	20	-	2	00	20	_	0.14	4.3 X 10 ⁻⁵			
24	- 1	0.65	0.35	62	10600		9		56	40	-	27	18	4.4	30			78	24	_	0.24	9 X 10 ⁻⁵			
24	II	0.65	0.35	62	10600	0	22	28	56	-	56	27	18	14	30	-	2	78	24		0.34	19 X 10 ⁻⁵			
28	- 1	1.75	0.95	167	8500		10		66	48	-	30	20	15	35		2.5	90	28	_	0.39	20X 10 ⁻⁵			
28	II	1./5	0.95	167	8500		28 38		00	-	66	30	20	15	35	-	2.5	90	28	_	0.54	42 X 10 ⁻⁵			
											RRJ- (CASTI	RON (CI)*											
38	I							40		66	-				45		3	114	37		2.00	1.85 X 10 ⁻³			
30	II	3.47	1.9	332	7100	10	12	48	80	_	78	38	24	18	40	-	٥	114	31		2.40	2.45 X 10 ⁻³			
	III							40			70				-	70		164	-	62	3.60	3.72 X 10 ⁻³			
42	I							45		75	-				50	_		126	40	_	3.20	4.1 X 10 ⁻³			
42	II	4.99	99 2.65 47	477	6000	12	14	55	95	_	94	46	26	20	50		3	120	40		3.80	5.9 X 10 ⁻³			
	III							55			34				-	75		176	-	65	5.50	8.54 X 10 ⁻³			
48	I							52		85	-				56	_		140	45	_	4.96	7.4 X 10 ⁻³			
40	II	5.49	3.1	524	5600	13	15	62	105	_	104	51	28	21	30		3.5	140	40		5.45	9.9 X 10 ⁻³			
	III							02			104				-	80		188	-	69	7.51	13.6 X 10 ⁻³			
55	I	7.27	4.1	694	4750	18	20	60	120	98	-	60	30	22	65	_	4	160	52		6.60	12.3 X 10 ⁻³			
55	II	1.21	4.1	034	4/30	10	20	74	120	_	118	00	30	22	00		-	100	52		7.50	17.3 X 10 ⁻³			
	III							/ 4			110				-	90		210	-	77	10.20	23.7X 10 ⁻³			
65	I							70		115	-				75	_		185	61	_	10.10	24.5 X 10 ⁻³			
05	II	10.19	6.25	973	4250	20	22		135	_	133	68	35	26	75		4.5	100	01		11.50	27.8 X 10 ⁻³			
	III							80			100				-	100		235	-	86	15.00	36.3 X 10 ⁻³			
75	I									135	-				85	_		210	69		16.00	54 X 10 ⁻³			
'5	ll l	20.73	12.8	1980	3550	28	30	95	160	_	158	80	40	30	- 00		5	210	09		18.20	61.4 X 10 ⁻³			
	III							33			100				-	110		260	-	84	21.20	71.5 X 10 ⁻³			
90	I							97	200	160		-	100	100			100	100	_		245	81		27.50	138 X 10 ⁻³
90	II	36.89	24	3523	2800	38	40			_		100			100	45	34	100		5.5	240	01		36.30	182 X 10 ⁻³
	III							110			130				-	125		295	-	106	44.80	225 X 10 ⁻³			

 $[\]hbox{\# Weight \& Moment of Inertia (M.I.) of coupling assembly refer to maximum finish bore without keyway. } \\$

^{*} Alternative hub material available on request - Steel (Sizes 19 to 90) , S. G. Iron (Sizes 38 to 90).

TECHNICAL DATA - Polyurethane Spiders

2 2.	Red	(Std.)	Yel	low		
Spider Size	Tnom (Nm)	T _{max} (Nm)	Tnom (Nm)	T _{max} (Nm)		
19	17	34	10	20		
24	60	120	35	70		
28	160	320	95	190		
38	325	650	190	380		
42	450	900	265	530		
48	525	1050	310	620		
55	685	1370	410	820		
65	940	1880	625	1250		
75	1920	3840	1280	2560		
90	3600	7200	2400	4800		
Hardness	95 Sh	ore A	92 Sh	ore A		
Temperature		- 40°C	o 90°C			

Selection Procedure:

- 1. Determine Application Nominal Torque (Nm) Tnom (Nm) = (kw x 9550/rpm)
- 2. Calculate application service factor using following charts Total service factor (SF) will be SF = SF1 x SF2 x SF3
- 3. Calculate Application Maximum Torque (Tmax)
 Tmax = Tnom X SF (Nm)
- 4. Select the proper spider showing Tnom greater than application nominal torque. Then select spider showing Tmax greater than application maximum torque. Select the higher of two.
- 5. Ensure that application rpm and max. bore requirements are less than or equal to selected coupling max. rpm and max. bore size otherwise select next size coupling.

For SF1, SF2, SF3 refer chart.

SF1 - Application Service Factor	or		
		Prime	Motor
Driven Machine / Example	Electric Motors	4 Cylinder or more	Less than 4 Cylinder
a. Uniform operation, no shocks.	1.5	2.0	2.5
b. Irregular operation, light shocks.	2.0	2.5	3.0
C. Irregular operation, medium shocks.	2.5	3.0	3.5
D. Irregular operation, heavy shocks.	3.0	3.5	4.0

SF2 - Application Service Fac	ctor for T	Temperature	
Temperature Range °C	< 30°C	30°C - 70°C	> 70°C
SF2	1.0	1.5	2.0

SF3 - Application Service Fac	tor for st	arting frequ	ency
Starting frequency cycles / hour	< 100	100 - 500	> 500
SF3	1.0	1.5	2.0

MISALIGNMENT DATA										
Size	19	24	28	38	42	48	55	65	75	90
Maximum axial displacement (mm)	1.6	1.8	2.0	2.2	2.3	3.0	3.0	3.5	3.5	4.5
Maximum radial misalignment (mm)	0.15	0.20	0.20	0.25	0.30	0.35	0.35	0.40	0.45	0.50
Maximum angular misalignment (Deg.)	0.80	0.80	0.80	0.90	0.90	1.0	1.0	1.0	1.1	1.1

ORDER SEQUENCE	Coupling	Hub Type	Finish Bore	Spider	Hub
	Size	(Driver / Driven)	(Driver / Driven)	Type	Material
Example	RRJ-55	1/11	40 / 60	Red	СІ

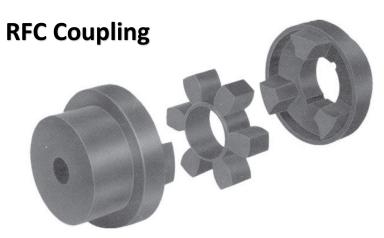
- Coupling with std. Spider is supplied if not specified.
- All dimensions are in mm unless otherwise specified.

Easy installation

Alignment is quickly achieved by simply placing a straight edge across the outside diameter of the hubs. No special tools are needed, only a hexagon wrench for the locking of the taper bush.

Accommodates Misalignment

The RFC coupling compensates for axial, parallel & angular misalignments.


Extra protection Against Failure

The Inter-linking hubs act as an additional safegaurd, though the flexible element fails, the drive will be maintained by the interaction of the jaws which are an integral part of the coupling hubs. The hubs are made of C. I.. Jaws are unmachined.

Interchangeable

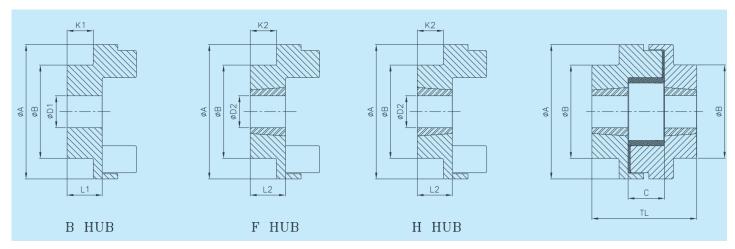
The RFC coupling is compatible with leading makes of couplings.

Elastomeric spider is of Nitrile rubber having shore hardness of 80° , suitable for temperatures from -40° C to $+\ 100^{\circ}$ C.

The RFC coupling is a general purpose flexible coupling available in eight different sizes in taper bore, pilot bore or finished bore.

SERVICE FACTORS

	Type of Driving Unit										
Applications with excessive shocks, vibrations and torque fluctuations (compressors, engine, centrifugal pumps blowers, fans, generators, conveyors etc.)		ectric Moto eam Turbir		Interna	Internal Combustion Engil Steam Engines Water Turbines						
blowers, fairs, generators, conveyors etc.)	Hours	s Per Day D	Outy	Hours Per Day Duty							
		8			8						
CLASS OF DRIVEN MACHINE	Upto	То	Over	Upto	То	Over					
	8	16	16	8	16	16					
Uniformly Driven Machines	1.00	1.12	1.25	1.25	1.40	1.60					
Machines Driven With Moderate Shocks.	1.60	1.80	2.00	2.00	2.24	2.50					
Machines Driven With Heavy Shocks.	2.50	2.80	3.12	3.12	3.55	4.00					


POWER RATING (kW)

Speed		Coupling Size												
rpm	RFC 7	RFC 9	RFC 11	RFC 13	RFC 15	RFC 18	RFC 23	RFC 28						
100	0.33	0.84	1.68	3.30	6.28	9.95	20.90	33.00						
1500	4.95	12.55	25.15	49.50	94.00	149.00	313.50	495.00						
3000	9.90	25.10	50.30	99.00	188.00	298.00	_	_						

Note: Power rating can be increased by using 92° shore hardness spider, please consult manufacturer for the same.

DIMENSI	ONS D	ATA (n	nm)													
		ВΗι	ıb			F/I	H Hub							TL		
Size	Bore	ØD1	K1	L1	#Bush	Bore	ØD2	K2	L2	ØA	ØВ	С				
	Max.	Min.	Ki		Size	Max.	Min.	IX2	LZ				TL1	TL2	TL3	
7	32	10	21	26	1008	25	10	19	24	69	60	17.5	66	68	70.0	
9	42	10	26	32	1108	28	10	18	24	85	65	22.5	70.5	78.5	86.5	
11	55	10	37	45	1610	42	14	19	27	112	100	29	83	101	119.0	
13	60	20	46	55	1610	42	14	17.5	26.5	130	105	36	89	117.5	146.0	
15	70	20	50	60	2012	50	14	24	34	150	115	40	108	134	160.0	
18	80	30	58	70	2517	60	16	35	47	180	125	49	143	166	189.0	
23	100	40	77	90	3020	75	24	39.5	52.5	225	155	58.5	163.5	201	238.5	
28	115	50	88.5	105	3535	90	35	74.0	90.5	275	185	74.5	255.5	270	284.5	

TECHNICAL DATA

Size	Maximum Speed	Torque Rating (Nm)		Moment of Inertia	Torsional Stiffness	Maximum Mi	salignment	\$ Weight
	rpm	Normal	Maximum	WR² (kgm²)	(Nm / degree)	Parallel	Axial	(kg)
RFC 7	8300	31.5	72	0.0003	10.2	0.3	+0.20	1.1
RFC 9	6740	80	180	0.001	25.5	0.3	+0.49	1.0
RFC 11	5110	160	360	0.003	48.0	0.3	+0.61	5.0
RFC 13	4400	315	720	0.006	84.0	0.4	+0.79	8.0
RFC 15	3820	600	1500	0.010	176.0	0.4	+0.92	11.7
RFC 18	3180	950	2350	0.022	240.0	0.4	+1.09	18.2
RFC 23	2540	2000	5000	0.065	336.0	0.5	+1.32	35.0
RFC 28	2080	3150	7200	0.191	960.0	0.5	+1.70	66.5

- # Available only with taper bore, without taper bush.
- \$ Weight and M.I. are at max bores with one type-B hub combination.

NOTES: TL1 = Combination of F-F / H-H / F-H hub

TL2 = Combination of B-F / B-H hub

TL3 = Combination of B-B hub

Snap wrap Couplings

Type L Coupling

Spiders - Synthetic Rubber, Polyurethane, Hytrel, Bronze

Type SW Coupling

SW Elements - Synthetic Rubber, Polyurethane, Hytrel

Type RRS Spacer Coupling

6 ways the "Snap Wrap" coupling can help pay for itself:

1. Prebored hubs

Hubs bored and keyed to standard IEC motor shaft sizes.

2. Snap Wrap element

Ease of inspection and replacement within 5 minutes.

3. Modular hub design

Both Models, SW & RRS use the same hubs.

for pump applications.

4. Spacer coupling

RRS spacer model is available

5. Fully machined

hubs

Balance, ease of alignment and smooth contact surface for elements are assured.

6. Any environment

Water, oil, greases & dust do not

affect performance.

With its unique wrap around Nitrile rubber connecting element, the Snap Wrap coupling eliminates the need for dismantling the connected equipment while inspecting or replacing the element.

This is a major benefit when down time on machinery can run into huge amounts.

Combined with a range or prebored hubs, a modular hub design and a spacer option, the Snap Wrap coupling is unsurpassed for quality, flexibility, speed of installation and maintenance.

SELECTION PROCEDURE

(a) Service Factor

Determine appropriate SERVICE FACTOR from table A.

(b) Design Power

Convert application rating at 100 rpm by multiplying service factor. This gives DESIGN POWER which is used as a base for coupling selection.

(c) Coupling Size

Refer respective table for your required coupling type and read from the appropriate speed column until a power equal to or greater than the DESIGN POWER is found.

(d) Bore Size

Refer respective coupling 'TECHNICAL DATA' table to check that the required bores can be accommodated.

EXAMPLE

A coupling is required to transmit 65 kW from an electric motor which runs at 1500 rpm to a centrifugal pump for 12 hours a day. The motor shaft diameter is 60 mm. and the pump shaft diameter is 55 mm.

(a) Service Factor

From Table A the service factor is 1.0

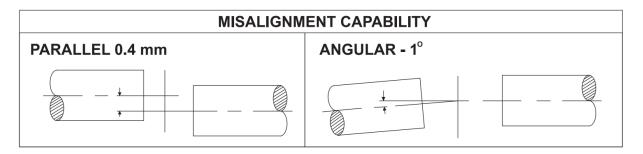
(b) Design Power

Design Power

@100rpm =
$$\frac{100}{1500}$$
 x 65kW x 1(SF) = 4.3 kW

(c) Coupling Size

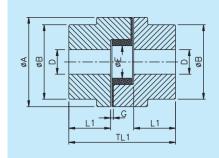
Refer Table. The first power to exceed Design Power of 4.3kW is 5.6kW. The size of coupling specified in the first column corresponding to 5.6kW is SW - 276.

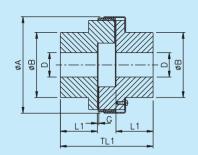

(d) Bore Size

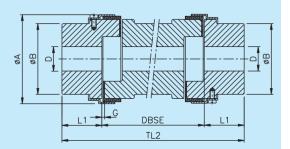
Max. Bore for coupling size SW-276 is 75 mm. This shows that both the shaft diameters are within the range.

SERVICE FACTORS

		T	ype of D	riving Un	it		
SPECIAL CLASSES For applications where substantial shock, vibration and torque fluctuations occur and for reciprocating machines e.g. internal combustion engines, piston pumps and compressors, refer to Rathi Transpower with full	Electr	ic Motors		Internal Combustion Engir Steam Engines Water Turbines			
machine details	Hours p	er day dut	у	Но	urs per da	y duty	
Driven Machine Class	8 and under	over 8 to 16 inclusive	over 16	8 and under	over 8 to 16 inclusive	over 16	
UNIFORM							
Agitators, Brewing machinery, Centrifugal Blowers, Conveyors, Centrifugal Fans and Pumps, Generators, Sewage disposal Equipments.Evaporators, Feeders, Textile machines, Wood working machines.	1.00	1.00	1.00	1.00	1.10	1.10	
MODERATE SHOCK*							
Clay working machinery, Crane Hoists, Laundry machinery, Machine Tools, Rotary Mills, Paper Mill machinery, Non-uniformly loaded centrifugal pumps, Rotary Screens, Centrifugal Compressors.Shredders, Printing presses, Oil industry, Mixers, Food industry, Beaters, Bucket elevators, Gear pumps, Wood working machinery, Textile machinery	1.10	1.10	1.20	1.20	1.25	1.25	
HEAVY SHOCK*							
Reciprocating Conveyors, Crushers, Shakers, Metal Mills, Rubber machinery (Banbury Mixers and Mills) Reciprocating Compressors, Welding Sets, Freight & passenger elevators, Cooling tower fans, Hammer mills, Reciprocating pumps, Vibrating screens, Winches, Wire drawing machines.	1.25	1.40	1.60	1.60	1.80	2.00	


[★] It is recommended that keys with top clearance are fitted for applications where load fluctuation is expected.





JAW - FLEX COUPLINGS TYPE - L/SW/RRS

TYPE L **TYPE SW TYPE RRS**

TECHNICAL DATA

Coupling Contact Public Public Polymer Rating								Pilot	Max.	Ø	Α.				Length		
Cou	piing	Synthetic		Polyure		HTr		Drill	Bore	<u> </u>		ØB ØE		Gap	thru'	DBSE	# Overall Length
Туре	Size	Rated Torque (Nm)	kW@ 100 rpm	Rated Torque (Nm)	kW@ 100 rpm	Rated Torque (Nm)	kW@ 100 rpm	Size	D	L	SW/ RRS			5	Bore L1		TL1
	35	0.38	0.004	-	-	-	-	-	10	16	-	16	-	1	6.5	-	21
L	50	2.80	0.03	4.2	0.04	7.0	0.07	-	16	27	-	27	-	1	15	-	42
	70	4.90	0.05	7.4	0.08	12.3	0.13	-	20	35	-	35	-	2	19	-	51
	• 75	9.80	0.1	14.7	0.15	24.5	0.26	-	22	45	-	45	-	2	21	-	55
	1 75	9.80	0.1	14.7	0.15	24.5	0.26	-	22	45	-	39	-	2	21	-	55
	95	21.10	0.22	31.7	0.33	52.8	0.55	-	28	54	65	49	19	2	25	90,100,140	63
	▶ 99	46.40	0.49	69.6	0.73	116	1.2	-	30	65	78	51	27	2	27		72
L	100	46.40	0.49	69.6	0.73	116	1.2	-	35	65	78	57	27	2	35		88
SW	110	89	0.93	133.5	1.4	222.5	2.3	-	42	85	96	76	35	3	43	90	108
Tato	150	141	1.5	211.5	2,2	352.5	3.7	-	48	96	111	80	35	3	45	100	115
	190	190	2.0	285	3.0	475	5.0	-	60	115	129	102	45	3	54	140	133
	225	265	2.8	397.5	4.2	662.5	6.9	-	65	127	142	111	45	3	64	180	153
	226	327	3.4	490.5	5.1	817.5	8.6	25	70	137	153	119	51	3	70		178
L	276	532	5.6	798	8.4	1330	13.9	25	75	157	173	127	60	3	80	-	200
sw	280	782	8.2	1173	12.3	1955	20.5	30	80	192	208	140	70	3	80	-	200
	295	1279	13.4	1918.5	20.1	3197.5	33.5	30	95	237	253	162	80	3	95	-	238
	2955	2132	22.3	* 3198	* 33.5	* 5330	* 55.8	30	105	237	253	180	80	3	108	-	264
sw	300	3047	31.9	4570.5	47.9	7617.5	79.8	30	105	-	272	180	-	3	115	-	283
	350	4308	45.1	6462	67.7	10770	112.8	30	115	-	323	200	-	3	128	-	309

All dimensions are in mm.

For RRS/SW maintain gap 'G' at the time of assembly.

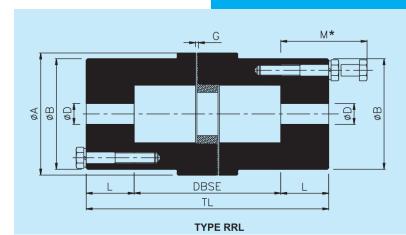
FOR RRS, TL2=DBSE + 2L1

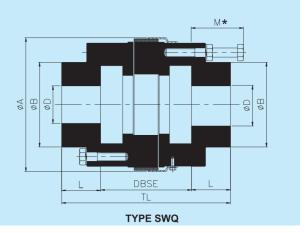
For vertical installation contact RATHI.

Maximum bores can be increased in case of steel hubs. Consult manufacturer

* Only SW version available, L version not available.

▶ RRS 99 not available


Material: Sintered iron for sizes 035 to 075 Aluminum for sizes 050 to 110 & for all RRS spacers. Cast Iron for sizes 095 to 350.


075 -- Aluminium075 -- Sintered Iron

JAW - FLEX COUPLINGS TYPE - RRL/SWQ

Special Features:

Provides quick, easy disconnection from driving unit without disturbing drive shaft or piping, permits removal of equipment from line in three simple steps. Only two sets of bolts need to be removed.

Applications:

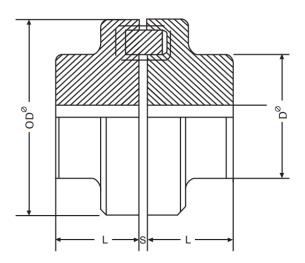
For pumps in chemical industry, ideal for reciprocating pumps, diesel or gas engines, multiple generator sets and other drives where rapid disconnection without disturbing the drive or driven unit is required.

DIMENSIONS DATA (mm)

	Synthetic Rubber		DBSE		Bore Ø D				Length thru' Bore		Min. bolt clearance		Total Length	
Size	kW at 100	Rated Torque			Max.		Outside Dia. Ø A	Adapter Hub Dia.	L		* M			
	rpm			Min. Std.		•		Std.	ØВ	•	Std.	•	Std.	
RRL-095	0.22	21.1	75	90,100,140	10	_	28	54	54	_	25	_	45	140, 150, 190
RRL-100	0.49	46.4	75		10	_	38	65	65	_	30	_	50	150, 160, 200
RRL-110	0.93	89.0	75		15	24	42	85	76	35	35	36	60	160, 170, 210, 250
RRL-150	1.48	141.0	75	90,100,	15	32	48	96	90	40	40	48	70	170, 180, 220, 260
RRL-190	1.99	190.0	75	140,180	15	38	55	115	102	45	45	48	75	180, 190, 230, 270
RRL-225	2.78	265.0	90		15	42	65	127	115	50	50	54	90	190, 200, 240, 280

▲ Triangular Adapter Body.

Size	kW at 100	Rated Torque	DBSE	Bore	ØD	Outside Dia.	Adapter Hub Dia.	Length thru' Bore	Min. bolt	Total Length
	rpm	Nm		Min.	Max.	ØA	ØВ	L	* M	
SWQ-226	3.42	327		25	70	153	134	50	92	240, 280
SWQ-276	5.49	524	140, 180	25	80	173	130	60	107	260, 300
SWQ-280	8.20	783		30	80	208	130	60	70	260, 300
SWQ-295	13.39	1279		30	105	253	160	70	80	280, 320
SWQ-2955	22.40	2139		30	105	253	160	75	80	290, 330
SWQ-300	31.90	3046		30	115	272	180	80	85	300, 340
SWQ-350	45	4297		30	125	323	200	90	85	320, 360


- * Loosening & Tightening of bolts is possible within dimension 'M'.
- All dimensions are in mm.
- Maintain gap 2 mm for RRL-095, RRL-100 & 3 mm for all other sizes at the time of assembly.
- Non-standard (NSTD) DBSE available on request.
- For vertical installation contact RATHI.

NM Couplings

Coupling NM Type	Torque	Kg/m	Max Speed	Bore D	iameter	Boss Dia	Outside	Distance	Approx. weight Kgs.
	Normal	Max	RPM.	Min	Max	(D)	diam. (OD)	Through boss (L)	
50	1.3	2.3	13,500	7	19	33	50	25	0.48
67	2.2	4	10,000	9	28	46	67	30	1.02
82	5.0	9	8,000	10	32	53	82	40	1.88
97	10.5	19	7,000	12	42	69	97	50	3.54
112	16.7	30	6,000	14	48	79	112	60	5.40
128	26.7	48	5,000	18	55	90	128	70	8.10
148	41.7	75	4,500	22	65	107	148	80	13.50
168	69.5	125	4,000	28	75	126	170	90	19.30
194	11	200	3,500	32	85	140	194	100	26.30
214	167	300	3,000	45	95	157	214	110	35.70

